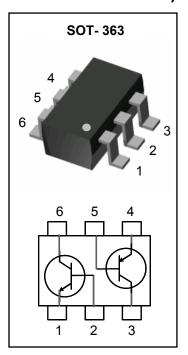


DUAL SURFACE MOUNT NPN/PNP TRANSISTORS (COMPLEMENTARY)


This device contains two electrically-isolated complimentary pair (NPN and PNP) general-purpose transistors. This device is ideal for portable applications where board space is at a premium.

FEATURES

- Electrically-Isolated Complimentary Transistor Pairs
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard
- AEC-Q101 qualified

APPLICATIONS

- General Purpose Amplifier Applications
- Hand-Held Computers, PDAs

T_J = 25°C Unless otherwise noted

MAXIMUM RATINGS - NPN

Rating	Symbol	Value	Units
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V_{CEO}	45	V
Emitter-Base Voltage Voltage	V _{EBO}	6.0	V
Collector Current	I _C	100	mA

MAXIMUM RATINGS - PNP

 T_J = 25°C Unless otherwise noted

Rating	Symbol	Value	Units
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	$V_{\sf CEO}$	-45	V
Emitter-Base Voltage Voltage	V _{EBO}	-5.0	V
Collector Current	Ic	-100	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Units
Total Power Dissipation (Note 1)	P _D	200	mW
Operating Junction Temperature Range	TJ	-55 to +150	°C
Storage Temperature Range	Tstg	-55 to +150	°C
Thermal Resistance, Junction to Ambient (Note 1)	R _{thja}	556	°C/W

Note 1. FR-4 board 70 x 60 x 1mm with minimum recommended pad layout

NPN ELECTRICAL CHARACTERISTICS (Note 2)

T_J = 25°C Unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Collector-Emitter Breakdown Voltage	eV _{(BR)CEO}	I _C = 10mA	45	-	-	V
Collector-Emitter Breakdown Voltage	eV _{(BR)CES}	I _C = 10uA, V _{EB} = 0	50	-	-	V
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = 10uA	50	-	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	I _E = 1.0uA	6.0	-	-	V
Collector Cutoff Current	lan a	V _{CB} = 30V, I _E = 0 T _J =150°C	-	-	15	nA
Collector Cutoff Current	I _{CBO}		-	-	5	uA
Emitter Cutoff Current	I _{EBO}	V _{EB} = 5V, I _C = 0	-	-	100	nA
DC Current Gain	h _{FE}	V _{CE} = 5V, I c= 2.0mA	200	-	450	-
Collector-Emitter Saturation Voltage	VCE(SAT)	I _C = 10mA, I _B = 0.5mA	-	-	0.1	V
Collector-Emitter Saturation Voltage		$I_C = 100 \text{mA}, I_B = 5 \text{mA}$	-	-	0.4	V
Base-Emitter Saturation Voltage	V _{BE(SAT)}	I _C = 10mA, I _B = 0.5mA	-	0.75	-	V
Base-Emitter Voltage	V_{BE}	V _{CE} = 5V, I c= 2.0mA	0.58	-	0.7	V
Gain-Bandwidth Product	f⊤	V _{CE} = 5V, I c= 10mA f = 100MHz	100	-	-	MHz
Collector-Base Capacitance	Ссво	V _{CB} = 10V, f =1.0MHz	-	-	1.5	pF
Emitter-Base Capacitance	Сево	V _{EB} = 0.5V, f =1.0MHz	-	7	-	pF

PNP ELECTRICAL CHARACTERISTICS (Note 2)

T = 25°C Unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Collector-Emitter Breakdown Voltage	eV _{(BR)CEO}	I _C = -10mA	-45	-	-	V
Collector-Emitter Breakdown Voltage	eV _{(BR)CES}	I _C = -10uA, V _{EB} = 0	-50	-	-	V
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = -10uA	-50	-	-	V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = -1.0uA	-5.0	-	-	V
Collector Cutoff Current	lone	V _{CB} = -30V, I _E = 0 T _J =150°C	-	-	-15	nA
Collector Cutoff Current	I _{CBO}		-	-	-4.0	uA
Emitter Cutoff Current	I _{EBO}	V _{EB} = -5V, I _C = 0	-	-	-100	nA
DC Current Gain	h _{FE}	V _{CE} = -5V, I c= -2.0mA	200	-	475	
Collector-Emitter Saturation Voltage	VCE(SAT)	$I_C = -10 \text{mA}, I_B = -0.5 \text{mA}$	-	-	-0.3	V
Collector-Emitter Saturation Voltage		$I_C = -100 \text{mA}, I_B = -5 \text{mA}$	-	-	-0.65	V
Base-Emitter Saturation Voltage	V _{BE(SAT)}	I _C = -10mA, I _B = -0.5mA	-	-0.7	-	V
Base-Emitter Voltage	V_{BE}	V _{CE} = -5V, I c= -2.0mA	-0.6	-	-0.75	V
Gain-Bandwidth Product	f _T	V _{CE} = -5V, I c= -10mA f = 100MHz	100	•	-	MHz
Collector-Base Capacitance	Ссво	V _{CB} = -10V, f =1.0MHz	-	-	4.5	pF
Emitter-Base Capacitance	Сево	V _{EB} = -0.5V, f =1.0MHz	-	11	-	pF

Note 2. Short duration test pulse used to minimize self-heating

ELECTRICA5L CHARACTERISTICS CURVE

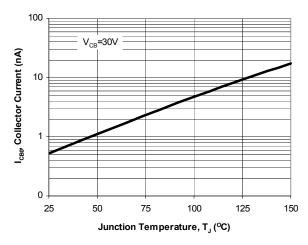


Fig. 1. Typical I_{CB0} vs. Junction Temperature

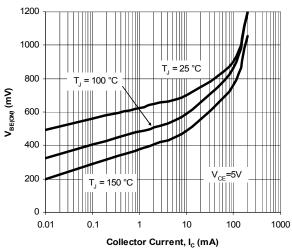


Fig. 3. Typical $V_{BE(ON)}$ vs. Collector Current

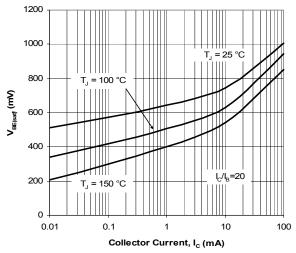


Fig. 5. Typical $V_{BE(SAT)}$ vs. Collector Current

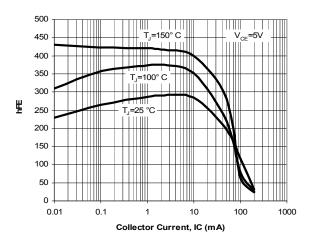


Fig. 2. Typical h_{FE} vs. Collector Current

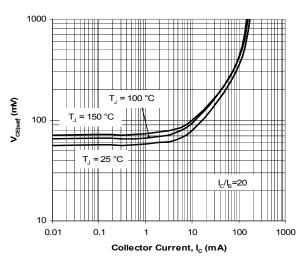


Fig. 4. Typical $V_{CE(SAT)}$ vs. Collector Current

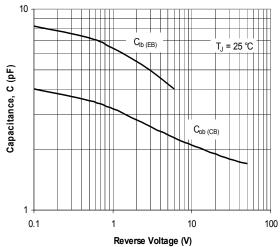
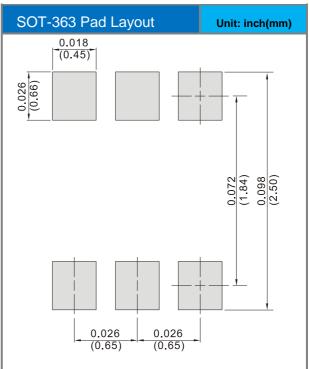


Fig. 6. Typical Capacitances vs. Reverse Voltage


BC847BPN-AU

Product and Packing Information

Part No.	Package Type Packing Type		Marking
BC847BPN-AU	SOT-363	3K pcs / 7" reel	47P
BC847BPN-AU	SOT-363	10K pcs / 13" reel	47P

Packaging Information & Mounting Pad Layout

BC847BPN-AU

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties
 of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation.
 Customers are responsible in comprehending the suitable use in particular applications.
 Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments relating to human life and for any applications concerning life-saving or life-sustaining, such a medical instruments, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.