

PJ74LVC1G07 Datasheet

Single Buffer/Driver With Open-Drain Output In a SOT23-5 and SC70-5 Package

Version: Rev.1.0

Release Date: 2025-09-30

PANJIT International Inc.

www.panjit.com.tw

General Description

The PJ74LVC1G07 is a single buffer/driver. The device is designed for 1.65 V to 5.5 V for $V_{\rm CC}$ operation, it can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.

The output of the PJ74LVC1G07 device is open drain and can be connected to other open drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 32 mA.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times. The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

The PJ74LVC1G07 is available in SOT23-5 and SC70-5 packages.

Simplified Schematic

Features

- ♦ Wide Supply Voltage Range : 1.65 V to 5.5 V
- igoplus Max. T_{PD} of 4.2 ns at V_{CC} = 3.3 V
- ♦ Low Power Consumption, 10 μA (Max. Icc)
- ♦ ±24 mA Output Drive at V_{CC} = 3.3 V
- ◆ Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **♦** ESD Protection Exceeds JESD 22
 - 2000 V Human-Body Model (A114-A)
 - 1000 V Charged-Device Model (C101)
- ◆ Operating temperature Range : -40°C to 125°C
- ♦ Available Package : SOT23-5 and SC70-5

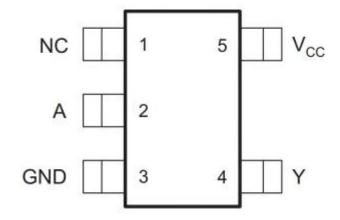
Applications

- **♦** Active Noise Cancellation (ANC)
- **♦** Blood Pressure Monitor
- **◆** Embedded PC
- ◆ Solid State Drive (SSD) : Client and Enterprise
- ◆ TV : LCD/Digital and High-Definition (HDTV)
- **♦** Tablet : Enterprise
- ♦ Video Analytics : Server
- Wireless Headset, Keyboard, and Mouse
- Power Supply : Telecom/Server AC/DC Controller

Ordering Information

Order number	Marking ID	Package	MSL	Description
PJ74LVC1G07S5	A9 DNN	SOT23-5	Level-3	Halogen free RoHS compliant in T/R, 3,000 pcs/Reel
PJ74LVC1G07C5	A4 W	SC70-5	Level-3	Halogen free RoHS compliant in T/R, 3,000 pcs/Reel

Note:


(1) Panjit can meet RoHS 2.0/REACH requirement. So most package types Panjit offers only states halogen free, instead of lead free.

Marking Information

Marking ID	Package	Definition
A9 DNN	SOT23-5	A9: Product code D: Date code NN: Serial number
A4 W	SC70-5	A4: Product code W: Week code

Pin Configuration

SOT23-5 and SC70-5 (Top View)

Functional Pin Description

	Pin	Description		
Name	Num	Description		
NC	1	No Connect		
А	2	Data Input		
GND	3	Ground		
Υ	4	Data Output		
V _{CC}	5	Supply Power Input		

Function Table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level$

INPUTs	OUTPUT
A	Y
L	L
Н	Н

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

Parameter	Symbol	Value	Units
Supply Voltage	Vcc	-0.5 to 6.5	V
Input Voltage	Vı	-0.5 to 6.5	V
Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾	Vo	-0.5 to 6.5	V
Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾	Vo	-0.5 to Vcc+0.5	V
Input clamp current, Vi < 0	lık	-50	mA
Output clamp current, Vo < 0	Іок	-50	mA
Continuous output current	lo	±50	mA
Storage temperature range	Тѕтс	-65 to 150	°C
ESD HBM, ANSI/ESDA/JEDEC JS-001(4)	ESDHBM	±2000	V
ESD CDM, JESD22-C101 ⁽⁵⁾	ESDcdm	±1000	V

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

⁽⁴⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽⁵⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Cumphinishtone	\/	Operating	1.65		5.5	W	
Supply voltage	Vcc	Data retention only	1.5			V	
Input voltage	Vı		0		5.5	V	
Output voltage	Vo				Vcc	V	
		Vcc = 1.65 V to 1.95 V	0.65 x Vcc				
High lavel innerticality		Vcc = 2.3 V to 2.7 V	1.7			W	
High-level input voltage	ViH	Vcc = 3 V to 3.6 V	2			V	
		Vcc = 4.5 V to 5.5 V	0.7 x Vcc				
	VıL	Vcc = 1.65 V to 1.95 V			0.35 x Vcc	V	
Lavelaval immediation		Vcc = 2.3 V to 2.7 V			0.7		
Low-level input voltage		Vcc = 3 V to 3.6 V			0.8		
		Vcc = 4.5 V to 5.5 V			0.3 x Vcc		
	loL	Vcc = 1.65 V			4		
		Vcc = 2.3 V			8		
Low-level output current		Vcc = 3 V			16	mA	
		Vcc = 3 V			24		
		Vcc = 4.5 V			32		
		Vcc = 1.8 V ±0.15 V, 2.5 V ±0.2 V			20		
Input transition rise or fall rate	△T/△V	Vcc = 3.3 V ±0.3 V			10	ns/V	
		Vcc = 5 V ±0.5 V			5		
Operating temperature	TA		-40		125	°C	

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
		Vcc = 1.65~5.5 V, loL= 100 μA			0.1	
		Vcc = 1.65 V, loL = 4 mA			0.45	
Law layed autout valtage		Vcc = 2.3 V, loL = 8 mA			0.3	V
Low-level output voltage	Vol	Vcc = 3 V, loL = 16 mA			0.4	V
		Vcc = 3 V, loL = 24 mA			0.55	
		Vcc = 4.5 V, loL = 32 mA			0.55	
Input leakage current	L	Vin = 5.5 V or GND, Vcc = 0~5.5 V			±5	μA
Power off leakage current	loff	Vin or GND, Vcc = 0~5.5 V			±10	μA
Quiescent supply current	la	V _{IN} = V _{CC} or GND, lout = 0, V _{CC} = 1.65~5.5 V			10	μА
Additional quiescent supply current per input pin	Δlq	Vcc = 3~5.5 V, one input ate Vcc-0.6 V, other input at Vcc or GND			500	μА

Switching Characteristics

Parameter	Symbol	Test Condition	Test Conditions		Тур	Max	Units
Propagation delay from input (A) to output (Y)		$V_{CC} = 1.8 V \pm 0.15 V$, $R_L = 1 KΩ$	- C∟= 30 pF	2.4		8.3	nS
	_	V_{CC} = 2.5 V ± 0.2 V R_L = 500 $Ω$	CL = 30 μF	1		5.5	nS
	TPD	V_{CC} = 3.3 V ± 0.3 V R_L = 500 Ω	C∟= 50 pF	1.5		4.2	nS
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ $R_L = 500 \Omega$	OL = 30 pr	1		3.5	nS

Typical Performance Characteristics

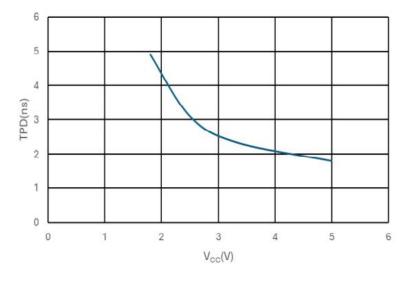
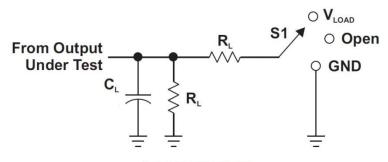



Figure 1. TPD across VCC at 25°C

Parameter Measurement Information

Test	Condition
tplz	VLOAD
tpzL	VLOAD
tpнz/tpzн	VLOAD

LOAD CIRCUIT

V	IN	IPUTS	V	V _{LOAD}	C _L	R∟	V.
Vcc	Vı	t _r /t _f	V _M	V LOAD	OL.	KL	VA
1.8 V ± 0.15 V	Vcc	≤ 2 ns	Vcc/2	2 x Vcc	30 pF	1 kΩ	0.15 V
2.5 V ± 0.2 V	Vcc	≤ 2 ns	Vcc/2	2 x Vcc	30 pF	500 Ω	0.15 V
3.3 V ± 0.3 V	3 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	Vcc	≤ 2.5 ns	Vcc/2	2 x Vcc	50 pF	500 Ω	0.3 V

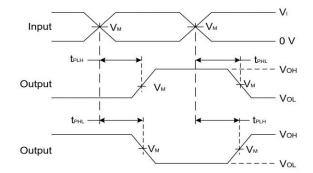


Figure 2. Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs

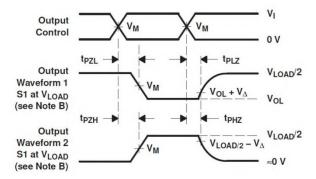
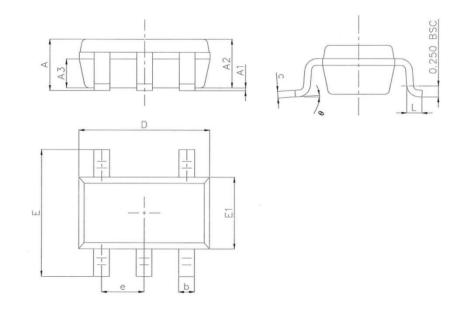


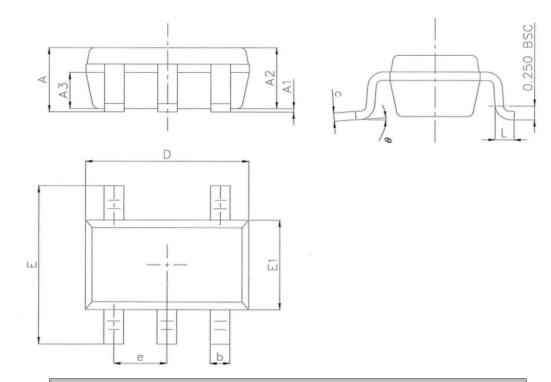
Figure 3. Voltage Waveform Enable and DisableTimes Low- and High-Level Enabling


Notes:

- (1) C_L includes probe and jig capacitance.
- (2) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (3) All pulses and supplied at pulse repetition rate ≤ 10 MHz.
- (4) The Inputs are measured separately one transition per measurement.
- (5) Since this device has open-drain outputs, t_{PLH} and t_{PHL} are the same as $t_{\text{PD.}}$
- (6) t_{PZL} is measured at V_M.
- (7) t_{PLZ} is measured at V_{OL} + V_{Δ} .

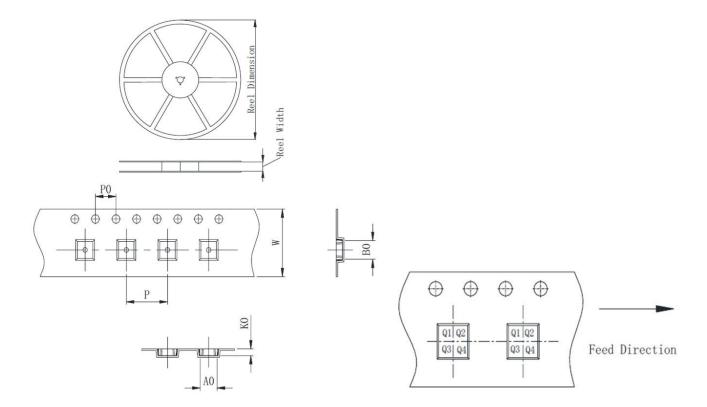
Package Outline Dimensions - SOT23-5

SOT23-5 Unit (mm)



Dimension in mm						
Symbol	Min	Nom	Max			
Α	1.050	1.150	1.250			
A1	0.000	0.060	0.100			
A2	1.000	1.100	1.200			
A3	0.550	0.650	0.750			
D	2.820	2.920	3.020			
E1	1.510	1.610	1.700			
E	2.650	2.800	2.950			
b	0.300	0.400	0.500			
е		0.950BSC				
θ	0°	4°	8°			
L	0.300	0.420	0.570			
С	0.100	0.152	0.200			

Package Outline Dimensions - SC70-5


SC70-5 Unit (mm)

Dimension in mm						
Symbol	Min	Nom	Max			
Α	0.90	0.95	1.00			
A1	0.00	0.05	0.10			
A2		0.9				
A3		0.55				
D	2.00	2.10	2.20			
E1	1.15	1.25	1.35			
E	2.00	2.10	2.20			
b	0.15	0.225	0.30			
е		0.65BSC				
θ	0°	4°	8°			
L	0.26	0.35	0.46			
С	0.10	0.15	0.20			

Packing information

Package type	Reel size	Reel dimension (±3.0mm)	Reel width (±1.0mm)	A0 (±0.1mm)	B0 (±0.1mm)	K0 (±0.1mm)	P (±0.1mm)	P0 (±0.1mm)	W (±0.3mm)	Pin1
SOT23-5	7'	180	8.4	3.23	3.17	1.32	4.0	4.0	8.0	Q3
SC70-5	7'	180	8.4	3.23	3.17	1.32	4.0	4.0	8.0	Q3

Version History

Version	Date	Changes
Rev.1.0	2025-09-30	Initial release

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document follow PCN procedure. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes
 no representation or warranty that such applications will be suitable for the specified use without further
 testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit International Inc. uses lot number as the tracking base, please provide the lot number for tracking when complaining.

Copyright© PANJIT International Inc.

Website: www.panjit.com.tw