

GENERAL DESCRIPTION

The PJ76358 consists of two independent, high-gain, internally frequency-compensated operational amplifiers, which were designed specifically to operate from a single power supply over a wide range of voltages. The device operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Its application areas include transducer amplifiers, dc gain blocks and all the conventional operational amplifier circuits.

Available Package : SOP-8P and TSSOP-8P.

FEATURES

- Wide Supply Voltage Range : 3 V to 36 V
- Low Supply Current Drain essentially
 Independent of Supply Voltage
- Low Input Biasing Current
- Low Input Offset Current and Offset Voltage
- Input Common-mode Voltage Range includes the Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- DC voltage gain 100 V/mV (Typ.)
- Internal Frequency Compensation

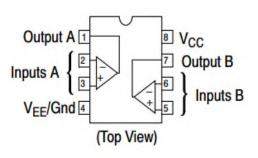
APPLICATIONS

- Transducer amplifiers
- DC gain blocks
- Conventional op-amp circuits in single power supply systems

ORDERING INFORMATION

ORDER NUMBER	Marking ID	Package	Description
PJ76358P_R2	PJ76358 PYMDNN	SOP-8P	Halogen free RoHS compliant in T/R, 4,000 pcs/Reel
PJ76358B_R2	A1 YM DNN	TSSOP-8P	Halogen free RoHS compliant in T/R, 5,000 pcs/Reel

Note 1


1. Panjit can meet RoHS 2.0/REACH requirement. So most package types Panjit offers only states halogen free, instead of lead free.

MARKING INFORMATION

Marking ID	Package	Definition		
PJ76358 PYMDNN	SOP-8P	PJ76358: Product code P: Package code Y: Year code M: Month code D: Day code NN: Serial No.		
A1 YM DNN	TSSOP-8P	A1: Product code Y: Year code M: Month code D: Day code NN: Serial No.		

PIN CONFIGURATION

FUNCTIONAL PIN DESCRIPTION

TERMINAL		DESCRIPTION		
NUMBER	NAME	DESCRIPTION		
1	Output A	Output A		
2	Input A-	Inverting Input A		
3	Input A+	Non-Inverting Input A		
4	VEE/Gnd	Ground		
5	Input B+	Non-Inverting Input B		
6	Input B-	Inverting Input B		
7	Output B	Output B		
8	VCC	Power supply		

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

PARAMETER			MAX	Unit
Supply Voltage	Vcc	-0.3	45	V
Differential Input Voltage	V _{IND}		36	V
Input Voltage	V _{IN}	-0.3	45	V
Input Current (V _{IN} < -0.3 V)	lin		50	mA
Maximum Output Current	Ιουτ		100	mA
Maximum Operating junction temperature	TJ	-40	125	°C
Storage temperature range	Тѕтс	-65	150	°C
Lead Temperature (Soldering, 10 seconds)			260	°C
ESD Protection (HBM)			700	V

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .

(3) For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage.

(4) Differential voltages are at Input+ with respect to Input-.

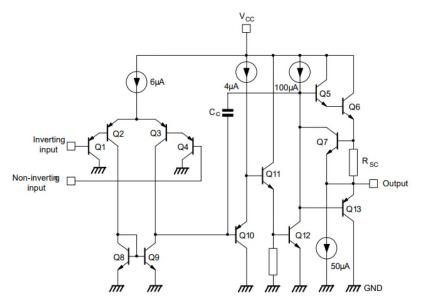
(5) The output may be shorted to ground or either power supply

RECOMMENDED OPERATING CONDITIONS

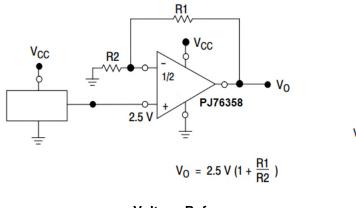
PARAMETER		MIN	ТҮР	МАХ	UNIT
V _{cc}	Supply Voltage	3		36	V
TA	Operating Ambient temperature	-40		85	°C

ELECTRICAL CHARACTERISTICS

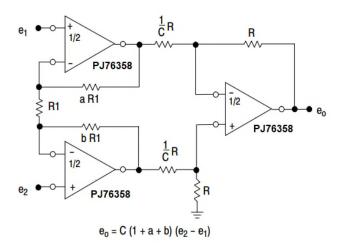
Test Condition : V_{CC} = 5.0 V, unless otherwise specified, all limits are 100% test at T_A = 25°C. ⁽¹⁾

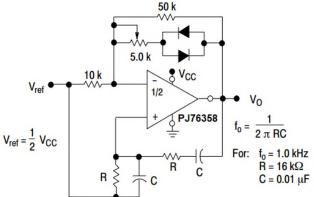

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
V	Input Offect Veltage	$\label{eq:VCC} \begin{split} V_{CC} &= 5 \; V \; to \; MAX, \; V_{IC} = V_{ICR(min)}, \\ V_{O} &= 1.4 \; V, \; T_{A} = 25^{\circ}C \end{split}$		3	7	mV
V _{IO}	Input Offset Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 5 \ V \ to \ 30 \ V, \ V_{IC} = V_{ICR(min)}, \\ V_{O} = 1.4 \ V, \ T_{A} = -40 \ to \ 85^{\circ}C \end{array}$			9	mV
αV _{IO}	Average Temperature Coefficient of Input Offset Voltage	T _A = -40 to 85°C		7		uV/°C
		V _o = 1.4 V, T _A = 25°C		2	50	nA
I _{IO}	Input Offset Current	$V_0 = 1.4 \text{ V}, \text{ T}_A = -40 \text{ to } 85^{\circ}\text{C}$			150	nA
αl _{IO}	Average Temperature Coefficient of Input Offset Current	T _A = -40 to 85°C		10		pA/°C
1	Input Pigo Current	V _O = 1.4 V, T _A = 25°C		-20	-250	nA
I _{IB}	Input Bias Current	V_{O} = 1.4 V, T_{A} = -40 to 85°C			-500	nA
VICR	Common-mode Input Voltage	$V_{CC} = 5 V$ to MAX, $T_A = 25^{\circ}C$	0		V _{CC} -1.5	V
VICR	Range ⁽¹⁾	$V_{CC} = 5 \text{ V to MAX}, T_A = -40 \text{ to } 85^{\circ}\text{C}$	0		V _{cc} -2.0	V
N/		$\label{eq:Vcc} \begin{split} V_{CC} &= MAX, \ R_L = 2 \ k\Omega, \\ T_A &= -40 \ to \ 85^\circ C \end{split}$	26			v
V _{он}	High-level Output Voltage	$V_{CC} = MAX, R_{L} = 10 \text{ k}\Omega,$ $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	27	28		V
V _{OL}	Low-level Output Voltage	R_L = 10 k Ω , T_A = -40 to 85°C		5	20	mV
	Large-Signal Differential Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= 15V, \ V_O {=} 1V \ to \ 11V, \\ R_L \geq 2 \ k\Omega, \ T_A = 25^\circ C \end{split}$	25	100		V/mV
A _{VD}	Amplification	$\label{eq:Vcc} \begin{split} V_{CC} &= 15V, \ V_0{=}1V \ to \ 11V, \\ R_L &\geq 2 \ k\Omega, \ T_A = -40 \ to \ 85^\circ C \end{split}$	15			V/mV
CMRR	Common-mode Rejection Ratio	$V_{CC} = 5 V$ to MAX, $V_{IC} = V_{ICR(min)}$ $T_A = 25^{\circ}C$	65	80		dB
k _{SVR}	Supply Voltage RejectionRatio $(\Delta Vcc \ / \ \Delta V_{IO})$	V_{CC} = 5 V to MAX, T_{A} = 25°C	65	100		dB
VoA/VoB	Crosstalk Attenuation	f =1 kHz to 20 kHz, $T_A = 25^{\circ}C$		120		dB
1	Output Commet	$V_{CC} = 15 \text{ V}, V_{ID} = 1 \text{ V}, V_{O} = 0 \text{ V}$ $T_{A} = 25^{\circ}\text{C}$	-30	-50		mA
I _{OUT}	Output Current	$V_{CC} = 15 \text{ V}, V_{ID} = 1 \text{ V}, V_{O} = 0 \text{ V}$ $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	-20			mA

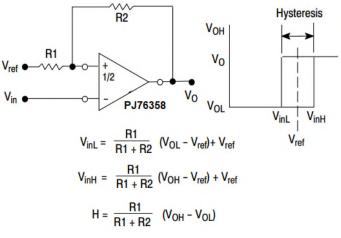
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{CC} = 15 \text{ V}, V_{ID} = 1 \text{ V}, V_{O} = 15 \text{ V}$ $T_A = 25^{\circ}\text{C}$	15	35		mA
Iout	Output Current	$V_{CC} = 15 \text{ V}, V_{ID} = 1 \text{ V}, V_{O} = 15 \text{ V}$ $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	7			mA
1001	Output Current	$V_{CC} = 15 \text{ V}, V_{ID} = 1 \text{ V}, V_0 = 2 \text{ V}$ $T_A = 25^{\circ}\text{C}$ 15 28	28		mA	
		V_{ID} = -1 V, V_O = 200 mV, T_A = 25°C	12	50		uA
l _{os}	Short-Circuit Output Current	V_{ID} = -1 V, V_{O} = 15 V, T_{A} = 25°C		50	70	mA
	Supply Current (Four Amplifiers)	$V_0 = 2.5 \text{ V}$, No Load $T_A = -40 \text{ to } 85^{\circ}\text{C}$		0.7	1.2	mA
I _{CC} Supp		$\label{eq:VCC} \begin{array}{l} VCC = MAX, \ V_{O} = 0.5 \ x \ V_{CC}, \\ No \ Load, \ T_{A} = -40 \ to \ 85^\circC \end{array}$		1	2	mA
SR	Slew Rate	$\label{eq:V_CC} \begin{split} V_{CC} &= 15 \text{ V}, V_{IN} = 0.5 \text{ to } 3 \text{ V}, \\ R_L &= 2k\Omega, C_L = 100 \text{pF}, \text{ unity gain} \\ T_A &= 25^\circ\text{C} \end{split}$		0.7		V/uS
GBW	Gain Bandwidth	$\begin{split} V_{CC} &= 30 \text{ V}, V_{IN} = 10 \text{ mV}, \text{f} = \\ 100 \text{kHz}, \text{R}_{L} &= 2 \text{k} \Omega, \text{C}_{L} = 100 \text{pF}, \\ \text{T}_{A} &= 25^{\circ} \text{C} \end{split}$		700		kHz
THD	Total Harmonic Distortion	$\label{eq:F} \begin{split} F &= 1 \text{ kHz}, A_{V} = 20 \text{ dB}, R_{L} = 2 k \Omega, C_{L} \\ &= 100 \text{pF}, V_{O} = 2 \text{ Vpp} \\ T_{A} &= 25^{\circ} \text{C} \end{split}$		0.04		%

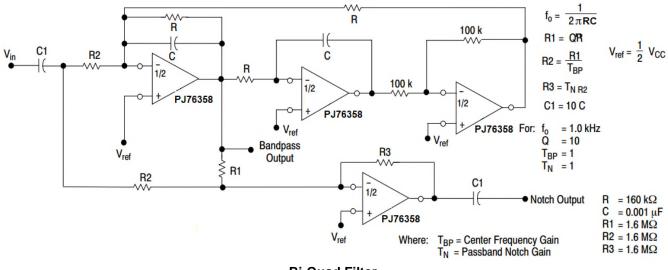

(1) All characteristics are measured under the open-loop conditions with zero common-mode input voltage, unless otherwise specified. MAX V_{cc} for testing purposes is 36 V, Vcc(max) = 45 V. Full range is -40 °C to +125 °C.

BLOCK DIAGRAM

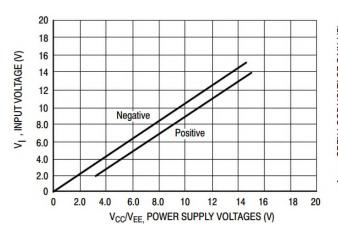



TYPICAL APPLICATIONS




High Impedance Differential Amplifier

Wien Bridge Oscillator


Comparator with Hysteresis

TYPICAL PERFORMANCE CHARACTERISTICS

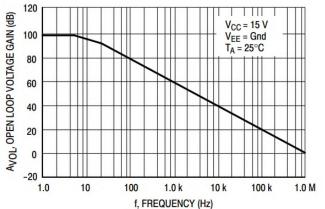


Figure-1. Input Voltage Range

V_{CC} = 30 V

 $V_{EE} = Gnd$ $T_A = 25^{\circ}C$

C_L = 50 pF

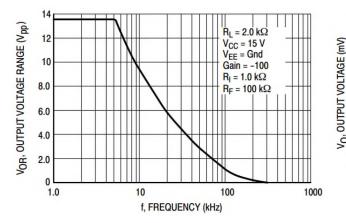
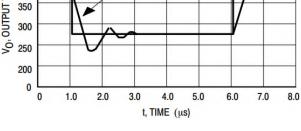


Figure-3. Large-Signal Frequency Response


T_A = 25°C

 $R_L = \infty$

25

30

35

Output

Input

Figure-4. Small Signal Voltage Follower Pulse Response (Noninverting)

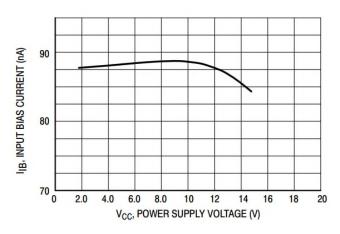


Figure-5. Power Supply Current versus **Power Supply Voltage**

V_{CC}, POWER SUPPLY VOLTAGE (V)

15

20

Figure-6. Input Bias Current versus Supply Voltage

2.4

2.1

1.8 1.5 1.2

0.9 0.6

0.3 00

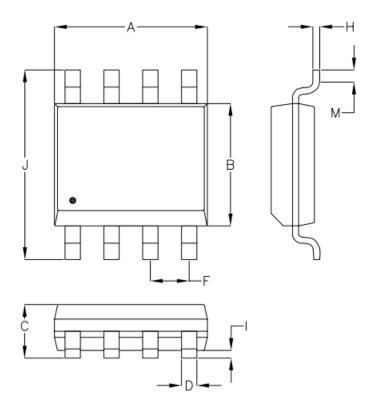
5.0

10

I_{CC}, POWER SUPPLY CURRENT (mA)

550

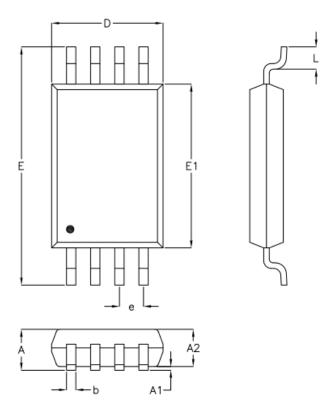
500


450

400

PACKAGE OUTLINE DIMENSION (SOP-8P)

SOP-8P Unit (mm)



Symbol	Dimensions	Dimensions In Millimeters		ns In Inches
Symbol	Min.	Max.	Min.	Max.
А	4.801	5.004	0.189	0.197
В	3.810	3.988	0.150	0.157
С	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
Н	0.170	0.254	0.007	0.010
1	0.050	0.254	0.002	0.010
J	5.791	6.200	0.228	0.244
М	0.400	1.270	0.016	0.050

PACKAGE OUTLINE DIMENSION (TSSOP-8P)

TSSOP-8P Unit (mm)

Symbol	Dimensions	Dimensions In Millimeters		s In Inches
Symbol	Min.	Max.	Min.	Max.
A	1.000	1.200	0.039	0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
D	2.900	3.100	0.114	0.122
е	0.650		0.026	
E	6.300	6.500	0.248	0.256
E1	4.300	4.500	0.169	0.177
L	0.450	0.750	0.018	0.030

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining