Almost Always ZVS for both switches to reduce EMI filters size and to reduce transformer size $\mathrm{f}_{\mathrm{sw}} \mathrm{V}_{\text {EAO-clamped=2.0V: Laser Trim for Switching Frequency Selection in Light Load Mode }}$

Ready for GaN or SiC

GENERAL DESCRIPTION

Dr. Flyback ${ }^{\mathrm{TM}}$ is the industry first Resonant Flyback controller with integrated Super Junction Mosfet (SJMOS):

TSSOP package:

High Side integrates a 650V/4A 1.2Ω Power Mosfet
Dr. Flyback ${ }^{\text {TM }}$ system's both switches (High Side Mosfet and Low Side Mosfet) are Almost Always Zero Voltage Switching (ZVS). As the results, its efficiency is ~2\% higher than the traditional Quasi-Resonant (QR) Flyback topology.

Dr. Flyback ${ }^{\text {TM }}$ unique Input Power and Switching Frequency one to one mapping, Dr. Flyback ${ }^{\text {TM }}$ efficiency is optimized for $100 \%, 75 \%, 50 \%, 25 \%, 10 \%$, light load and no load consumption.

APPLICATIONS

- Output Power < 150W Flyback Converter
- Optimal Power Density AC Adapter/Charger (uncased) $\rightarrow 32.8 \mathrm{~W} / \mathrm{in}^{3}$ (2W/cc)
- Cool Mos or GaN or SiC Device in AC Adapter

FEATURES

1. Patented (Both China and USA)
2. Industry First Resonant Flyback
3. Almost Always ZVS for both switches
4. $\mathrm{f}_{\mathrm{sw}} \mathrm{V}_{\text {EAO-clamped }}$ Options ($@ \mathrm{~V}_{\text {EAO }}=2.0 \mathrm{~V}$): for switching frequency optimization in light load mode (default: 89 kHz). For other frequency selection or adjustment, please consult with Champion FAEs
5. Optimal Efficiency and Power Density for Flyback power system with minimum components (~ 60 total components for USB Type-C PD AC Adapter)
6. $\sim 2 \%$ Additional Efficiency Improvement: (Efficiency of Dr. Flyback ${ }^{\text {TM }}$ system - Efficiency of QR Flyback system) ~2\% @ same test condition
7. $\eta \sim^{\sim} 95 \%^{+}$, the highest Efficiency Flyback Power Supply with Dr. Flyback ${ }^{\text {TM }}$, Dr. Bridge, Dr. SR and CM02
8. Lossless Snubber without snubber resistor; only Csnubber ($\mathrm{C}_{\text {sn }}$): Typical $\mathrm{C}_{\text {sn }}<2 \mathrm{nF}$
9. Kick Mode when $\mathrm{V}_{\text {EAO }}<0.5 \mathrm{~V} / 0.75 \mathrm{~V}$ for super light load
10. Power Supply Application Range from 10W to 150W
11. Typical No Load Input Power Consumption < 30mW @Vin = 230Vac @Vo=5V
12. Internal Jitter for easy EMI design
13. Internal 200V LDO with $\sim 10.7 \mathrm{~V}$ VDDA, LDO output
14. Protections:
A. Input-O.V.P $\sim 450 \mathrm{Vdc}$ (318 Vac):

When Input > 450Vdc, Dr. Flyback ${ }^{\text {TM }}$ stops and when Input < 450Vdc, Dr. Flyback ${ }^{\text {TM }}$ runs immediately.
B. Brown $\mathrm{In} / \mathrm{Out} \sim 117 \mathrm{Vdc}(83 \mathrm{Vac}) / 37 \mathrm{Vdc}$ (bulk cap voltage)
C. Output-O.V.P with ZCD pin :

ZCD pin > 5V : Latch Mode
ZCD pin >2.8V : Retry Mode(Default)
D. Output-U.V.P with ZCD pin: Retry Mode After $\mathrm{V}_{\text {EAO }}>2.75 \mathrm{~V}$ and Internal Timer $>4 \sim 10 \mathrm{mS}\left(1 / \mathrm{f}_{\text {sw }}\right)$ (~ 900 cycles) timer delay for Output-U.V.P: Retry Mode ZCDSHORT threshold $=0.375 \mathrm{~V}$, when VDDA $<\sim 13.0 \mathrm{~V}$ ZCDSHORT threshold $=0.50 \mathrm{~V}$, when VDDA $>\sim 13.0 \mathrm{~V}$
E. After $\mathrm{V}_{\text {EAO }}>3.65 \mathrm{~V}$ and internal Timer $>\sim 30 \mathrm{mS}$ for Peak Load protection: Retry Mode
F. VDDA: VDDA O.V.P = 27.5V: Retry Mode
G. VDDA: UVLO-on $\sim 21 \mathrm{~V}$, UVLO-off $\sim 7.5 \mathrm{~V}$
H. $\overline{\text { OTP/SD }}$ with 0.75 V threshold and internal pull up 52 uA with external thermistor: Retry Mode;
Type-C PD IC or Secondary-Side any protections can use a Photocoupler to pull down $\overline{\text { OTP/SD }}$ pin
I. Second Internal OTP $\sim 150^{\circ} \mathrm{C} / 130^{\circ} \mathrm{C}$: Retry Mode
J. Isense OVP : Isense pin >0.5V : Latch Mode
15. Regulation:

SSR, Secondary Side Regulation: with TL431 and with Photocoupler: Dr. Flyback ${ }^{\text {TM }}$ provides $450 u A$ at $V_{\text {EAO }}$ pin. Redundant OVP is possible through OTP/SD pin
16. Typical Rsense can be a 0.25 W power dissipation resistor for AC Adapter

CONDUCTOR

PIN CONFIGURATION
High Voltage 18-pin (TSSOP) TOP View Qн : 650V/4A SJMOS, Rds(on) typ. $=1.2 \Omega$

SIMPLIFIED BLOCK DIAGRAM

Note: $\mathbf{Q}_{\mathbf{H}}: 650 \mathrm{~V} / 4 \mathrm{~A}$ SJMOS, $\mathrm{R}_{\mathrm{DS}(\text { on })}$ typ. $=1.2 \Omega$

Product and Packing Information

Part No.	Protection Function	Package Type	Packing Type	Marking
DRFLYBACK-A	All Retry	TSSOP-18L	2500 pcs / 13" reel	Dr.Flyback
JPSAxxx				
DRFLYBACK-B	All Latch	TSSOP-18L	2500 pcs / 13" reel	Dr.Flyback
JPSBxxx				

Note :

Note : \begin{tabular}{|l|l|l|}

\hline \multicolumn{3}{|c|}{| Clamped Frequency |
| ---: |
| LL: Low Line |
| HL: High Line |}

\hline \multirow{2}{*}{ LL } \& Heavy Load CRM \& no clamping

\cline { 2 - 3 } \& Light Load DCM \& 89 kHz @VEAO $=2 \mathrm{~V}$

\hline \multirow{2}{*}{ HL } \& Heavy Load CRM \& no clamping

\cline { 2 - 3 } \& Light Load DCM \& $89 k H z @ V$ EAO $=2 V$

\hline
\end{tabular}

PIN DESCRIPTION

Pin No.	Symbol	Description	Operating Voltage			
			Min.	Typ.	Max.	Unit
1,18	$\mathrm{C}_{\text {sn }}$	Csn pin, High Side 650V/4A 1.2 SJMOS Drain and it needs to connected to the external $\mathrm{C}_{\text {sn }}$	$-0.5+\mathrm{V}_{\mathrm{L}}$	-	$650+\mathrm{V}$ L	V
2	HV VIN	Input Startup, Input OVP ($\mathrm{V}_{\text {th }} \sim 450 \mathrm{~V}$), Brown $\mathrm{In} /$ Out $\left(\mathrm{V}_{\text {th }}=117 \mathrm{Vdc}(83 \mathrm{Vac}) / 37 \mathrm{Vdc}\right)$, Feed forward	0	-	550	V
3, 15	V_{L}	High Side IC GND pin and Low Side Power Mosfet Drain pin	-0.5	-	650	V
4, 13	VSSD	Low Side IC GND pin				V
5	WindingDiode	LDO Input pin	-	-	200	V
6	ZCD	ZCD; Valley Detect; Output OVP (Vin=2.75V), Output UVP ($\mathrm{V}_{\text {th }}=0.375 \mathrm{~V}$ or 0.75 V determined by VDDA)	-5	-	5	V
7	OTP/SD	It can source 52 uA ; $\overline{\mathrm{OTP} / S D}$ voltage level $<0.75 \mathrm{~V}$, it goes to RetryMode	0	-	5	V
8	RESETFAULT	After going LatchMode, by letting RESETFAULT $<1.0 \mathrm{~V}$, it resets Fault state and the system restarts itself again (from AC remove).	0	-	5	V
9	$V_{\text {EAO }}$	Either PSR/SSR, Veao is the compensation location and it is an error amplifier output and it is like a GM, transconductance amplifier output.	0	-	5	V
10	ISENSE	It sense Rsense voltage peak	-0.3	-	1	V
11	LOWOUT	Low Side Gate Drive Output pin	-0.3	-	VDDA +0.3	V
12	VDDA	Low Side IC supply pin	7	-	27.5	V
14	$\mathrm{R}_{\mathrm{vin}}$	An external resistor connected between Ryin and Vin (// Crvin option)	$-0.3+\mathrm{V}_{\mathrm{L}}$	-	$6+\mathrm{V}_{\mathrm{L}}$	V
16	$\mathrm{V}_{\text {BOOT }}$	High Side IC supply pin	$7+\mathrm{V}_{\mathrm{L}}$	-	$27+V_{L}$	V
17	HIGHOUT	High Side Gate Drive Output pin	$-0.3+V_{L}$	-	$0.3+\mathrm{V}_{\text {BOOT }}+\mathrm{V}_{\mathrm{L}}$	V

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are those values beyond which the device could be permanently damaged.

TSSOP Parameter	Min.	Max.	Units
$\mathrm{C}_{\text {sn }}, \mathrm{C}_{\text {snubber }}(\mathrm{pin} 1,18)$	$-1+\mathrm{V}_{\mathrm{L}}$	$650+\mathrm{V}_{\text {L }}$	V
HV VIN (pin 2)	-	800	V
$\mathrm{V}_{\mathrm{L}}(\mathrm{pin} 3,15)$	-	650	V
ZCD (pin 6)	-5	7	V
$\overline{\text { OTP/SD (}}$ (in 7), $\overline{\text { RESETFAULT }}$ (pin 8), V VAO ((in 9), ISENSE (pin 10)	-	6	V
LOWOUT (pin 11)	VSSD-0.3	VDDA+0.3	V
LOWOUT (pin 11) (duration less than 25nS)	VSSD-3.0	VDDA+0.3	V
Peak LOWOUT (pin 11) Current Source or Sink	-	0.25	A
Peak LOWOUT (pin 11) Current Source or Sink (duration less than 5uS)	-	0.5	A
LOWOUT (pin 11), Energy Per Cycle	-	1.5	uJ
VDDA (pin 12)	-	29	V
Rvin (pin 14)	$-0.3+V_{L}$	$6+\mathrm{V}$ L	V
$\mathrm{V}_{\text {воот }}(\mathrm{pin} 16)$	$-0.3+\mathrm{V}$ L	$27+$ V	V
HIGHOUT (pin 17)	VL-0.3	$\mathrm{V}_{\text {L }}+\mathrm{V}_{\text {Boot }}+0.3$	V
Junction Temperature	-	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65	150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40	125	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	-	260	${ }^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) / Plastic 18 Pin (TSSOP)	-	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Case Temperature (θ_{Jc}) / Plastic 18 Pin (TSSOP)	-	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TSSOP Protections (Fault State): RetryMode, LatchMode and RESETFAULT pins

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	Test Conditions	Dr. Flyback ${ }^{\text {TM }}$			Unit
			Min.	Typ.	Max.	
HIGHOUT						
PMOS	HIGHOUT is pulled high	-	-	-	60	Ω
NMOS	HIGHOUT is pulled low	-	-	-	10	Ω
$\mathrm{C}_{\text {sn }}$						
$\mathrm{C}_{\text {sn, max }}$	External Maximum $\mathrm{C}_{\text {sn }}$ value	Requirement to User 2nF	-	2	-	nF
Rvin with external resistor						
RVIN ${ }_{\text {H }}$	Rvin Input Logic High	-	-	4-VL	-	V
RVINL	Rvin Input Logic Low	-	-	$3-\mathrm{V}$ L	-	V
ZCD						
ZCD ${ }_{\text {th }}$	Zero Crossing Detector	-	-	80	-	mV
O.V.P (Vo)	Output Over Voltage Protection	-	2.65	2.8	2.95	V
U.V.P (Vo)	Output Under Voltage Protection	when VDDA < ~13.0V	0.25	0.375	0.5	V
		when VDDA > ~13.0V	0.4	0.5	0.6	V
OTP/SD						
IOTP	OTP pin source current	-	49	52	55	uA
OTP	Over Temperature Threshold	-	0.6	0.75	0.9	V
RESETFAULT						
RESETtime	Time to reset after Resetfaultb pin <1V	-	-	150	-	mS
VResettaultb	-	-	-	1	-	V
$\mathrm{V}_{\text {EAO }}$						
$\mathrm{V}_{\text {EAO, max }}$	Maximum Effective VEAO	-	3.75	-	4.25	V
At HIGHLINE 20V/15V mode, when VDDA > ~13.1V						
Iveao source 2.75 V	Source Current	$\mathrm{V}_{\text {EAO }}>2.75 \mathrm{~V}$	300	450	600	uA
Iveao source 1.73V	Source Current	$\mathrm{V}_{\text {EAO }}<1.73 \mathrm{~V}$	100	200	300	uA
Power Limit	Peak Load Protection threshold	-	3.5	3.65	3.8	V
Mode Selection $\mathrm{V}_{\text {th }}$ (High)	Light Load threshold/ Fixed Current Mode	Sweep $V_{\text {EAO }}$ from OV to high until become High fsw	2.6	2.75	2.9	V
Mode Selection $\mathrm{V}_{\text {th }}$ (Low)	Light Load threshold/ Fixed Current Mode	Sweep Veao from high to OV until become Low f_{sw}	1.58	1.73	1.88	V
At HIGHLINE 3.3V/5V/9V/12V mode, when VDDA < ~13.0V						
Iveao Source	Source Current	Veao < 1.75V	100	200	300	uA
Power Limit	Peak Load Protection threshold	-	2.35	2.5	2.65	V
Mode Selection (Kick) (High)	Voltage difference between two Veao voltage levels when Mode changed	Kick and change mode define (sweep VEao from OV to high)	0.35	0.5	0.65	V
Mode Selection (Kick) (Low)	Voltage difference between two Veao voltage levels when Mode changed	Kick and change mode define (sweep $\mathrm{V}_{\text {EAO }}$ from high to 0 V)	0.35	0.5	0.65	V

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)

Symbol	Parameter	Test Conditions	Dr. Flyback ${ }^{\text {TM }}$			Unit
			Min.	Typ.	Max.	
At LOWLINE						
Iveao source	Source Current	-	300	450	600	uA
Power Limit	Peak Load Protection threshold	-	3.5	3.65	3.8	V
LOWOUT						
PMOS	LOWOUT is pulled high	-	-	-	60	Ω
NMOS	LOWOUT is pulled low	-	-	-	10	Ω
VDDA						
UVLO-on	IC on threshold	-	19	20	21	V
UVLO-off	IC off threshold	-	6.5	7.5	8.5	V
VBOOT						
UVLO-on	IC on threshold	-	8.5	9.5	10.5	V
UVLO-off	IC off threshold	-	7	8	9	V
ISENSE						
Current Limit	At LOWLINE with VEAO=3.5V	-	0.20	-	0.25	V

Note 1: Limits are guaranteed by testing, or sampling with the test conditions above.

Part/N	Brand Name	Type	$\begin{aligned} & \text { VDS } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { VGS } \\ & \text { (V) } \end{aligned}$	$\underset{(\mathrm{A})}{\mathrm{ID} \text { _TC }}$	$\begin{gathered} \text { RDS(ON) } \\ \text {-Max. } \\ (\Omega) \\ \hline \end{gathered}$	VGS(th)_Max. (V)	Ciss_Typ. (pF)	$\begin{gathered} \text { Coss_Typ. } \\ \text { (pF) } \end{gathered}$	Qg_Typ. (nC)	Qgs_Typ. (nC)	Qgd_Typ. (nC)	Trr_Typ. (ns)	Rg_Typ. (Ω) (V)
					$25^{\circ} \mathrm{C}$	10 V								
CMS6504AN	Champion	N	650	20	4	1.25	4	333	20	11.6	6.72	1.16	191.9	24.45
CMS6515AN	Champion	N	650	20	15	0.33	4	698	36	16.4	6.0	4.3	308.0	3.56

Our Goals

Flyback Converter is the lowest-cost-offline power supply for power <150W application. Dr. Flyback ${ }^{\text {TM }}$ is designed to maintain the lowest cost while squeezing all possible energy to achieve the highest possible efficiency. By proper design with CM02, Dr. Bridge, Dr. Flyback ${ }^{\text {TM }}$, and Dr. SR, the total efficiency is approaching 95% for a $15 \mathrm{~V} / 20 \mathrm{~V}$ output $45 \mathrm{~W} / 65 \mathrm{~W}$ AC Adapter (from our lab bench result with our demo board). By appropriating system design and operating switching frequency $\sim 150 \mathrm{KHz@High}$ Line ($\sim 120 \mathrm{KHz} @ L o w$ Line) under full load, the power density is approaching $32.8 \mathrm{~W} / \mathrm{in}^{3}(2 \mathrm{~W} / \mathrm{cc})$.

Dr. Flyback ${ }^{\text {TM }}$ is a Resonant Flyback

Dr. Flyback ${ }^{T \mathrm{M}}$ is a Resonant Flyback. Let us observe this equation: $0.5 \times \mathrm{Lm}_{\mathrm{m}} \times \mathrm{ILm}^{2}=0.5 \times \mathrm{C}_{\mathrm{vds}(\mathrm{QL})} \times \mathrm{V}_{\mathrm{ds}}{ }^{2} \ldots \ldots . \mathrm{Eq} 1$.
By observing the equation 1 , if the initial energy of $0.5 \times \mathrm{C}_{\mathrm{vds}(\mathrm{QL})} \times \mathrm{V}_{\mathrm{ds}}{ }^{2}$ is finite value, by switching $\mathrm{C}_{\mathrm{vds}(\mathrm{QL})}$ with different value of Capacitor, V_{ds} value can be different. As the results, the three switches in Dr. Flyback ${ }^{\text {TM }}$ system can be ZVS switching. The three switches of Dr. Flyback ${ }^{\text {TM }}$ are:

1. Main Flyback Switch at Bottom (Low Side), let us call it, QL
2. Change the snubber diode and let it become an integrated High Side Mosfet, let us call it, Q_{H}
3. Change the output diode and let it using Dr. SR, it is the third switch, and let us call it, QsR Above three switches can be Almost Always ZVS in the system of Dr. Flyback ${ }^{\text {TM }}$.

In the system of Dr. Flyback ${ }^{\text {TM }}$, we recycle the energy of snubber capacitor (external capacitor), $\mathrm{C}_{\text {sn }}$ to achieve ZVS . $\mathbf{C}_{\text {sn }}$ should be $<\mathbf{2 n F}$ for high switching frequency application.
$\mathrm{C}_{\text {sn }}$ value is selected so $0.5 \times \mathrm{C}_{\text {sn }} \times\left(\mathrm{N} \times \mathrm{V}_{\text {Out }}\right)^{2}=0.5 \times \mathrm{Cvds}_{(Q L)} \times(380 \mathrm{~V})^{2} \ldots . . \mathrm{Eq} 2$.
Typical $\mathrm{C}_{\mathrm{sn}}=1 \mathrm{nF} \sim 2 \mathrm{nF}$ for majority application. $\mathrm{C}_{\mathrm{sn}}<2.4 \mathrm{nF}$ should be sufficient to cover majority application. If $\mathrm{C}_{\mathrm{sn}}>2.4 \mathrm{nF}$, it may limit the switching frequency of application.

Switching highest switching frequency $f_{s w}$ with either Silicon Mosfet or GaN or SiC

Almost Always ZVS allows much higher switching frequency. When operating in heavy load mode, the maximum switching frequency of Dr. Flyback ${ }^{\mathrm{TM}}$ is not clamped. The switching frequency depends entirely on the transformer design and overall system performance considerations. In addition, in order to optimize light load efficiency and system operation, Dr. Flyback ${ }^{\mathrm{TM}}$ can be customized trimmed to the desired frequency ($@ V_{E A O}=2.0 \mathrm{~V}$) in light load mode (default is 89 kHz). For other switching frequency selection or adjustment, please consult with Champion FAEs. On our demo board, the power Mosfets (High Side and Low Side) are Super Junction Mosfets (SJMOS). Therefore, if the application wants to use GaN or SiC, Dr. Flyback ${ }^{\text {TM }}$ is ready.

Almost Always ZVS

Almost Always ZVS is achieved by two independent controllers inside of Dr. Flyback ${ }^{\text {TM }}$. As the results, the three switches of Dr. Flyback ${ }^{T M}$ System are Almost Always ZVS. The following pins allow you to tweak the sensibility of High Side On/Off edges:

- Ryin : Sense $V_{\text {L }}=$ Input Voltage: A Rvin resistor with $1 \mathrm{M} \Omega \sim 10 \mathrm{M} \Omega$ (tuning High Side Off edge)
- High Side Switch, Q_{H} Off Edge to squeeze out Csn Energy: Rvin resistor, typical value should be $1 \mathrm{M} \Omega \sim 10 \mathrm{M} \Omega$. If
 turned off at lower V. voltage level

2. ZCD : Delay Low Side Switch, Q_{L} On Edge: Naturally, V_{L} swings down, if Q_{L} is turned on too early, by adding a $C_{z c d}$ around 10 pF (option) it can shift Q_{L} on when V_{L} voltage level is near Zero voltage. Rzcd2 and Czcd2 location must be near ZCD pin. Therefore, ZCD network layout is very important. ZCD pin waveforms must be in phase with V_{L} waveform. ZCD phase and V_{L} phase must be the same. $Z C D$ is following VL. ZCD is VL/constant.

ZCD flat region target voltage $=\mathbf{2 . 2 V} \sim 2.5 \mathrm{~V}$

CONDUCTOR

Dr. Flyback ${ }^{\text {TM }} 45 \mathrm{~W}$ USB-C PD APPLICATION CIRCUIT

Dr. Flyback ${ }^{\text {TM }}$ 65W USB-C PD APPLICATION CIRCUIT (with Latch Protection Reset Circuit)

Performance Data (45W PD Application)

$115 \mathrm{Vac} / 60 \mathrm{~Hz}$							$230 \mathrm{Vac} / 50 \mathrm{~Hz}$						
$115 \mathrm{VAC} / 60 \mathrm{~Hz}$ Mode	$\begin{array}{\|c\|} \hline \text { 20V } \\ \hline \text { Load } \\ \hline \end{array}$	Efficiency					230VAC/50Hz Mode	$\begin{array}{\|c\|} \hline 20 \mathrm{~V} \\ \hline \text { Load } \end{array}$	Vout(Board end)	Efficiency			
		Vout (Board end)	Iout	Pin	$\begin{gathered} \text { EFF } \\ \text { (Board End) } \end{gathered}$	Fsw(KHz)				Iout	Pin	$\begin{array}{\|c\|} \hline \text { EFF } \\ \text { (Board End) } \end{array}$	Fsw(KHz)
KICK	10\%	20.22	0.225	5.301	85.82\%	33-36	DCM	10\%	20.22	0.225	5.632	80.78\%	30-34
DCM	25\%	20.24	0.563	12.5	91.08\%	45-49	DCM	25\%	20.23	0.563	12.88	88.35\%	48-52
DCM	50\%	20.25	1.125	24.6	92.61\%	64-73	DCM	50\%	20.22	1.125	24.923	91.27\%	62-71
CRM	75\%	20.26	1.688	36.75	93.03\%	138-160	CRM	75\%	20.19	1.688	36.95	92.21\%	167-177
CRM	100\%	20.32	2.250	49.03	93.25\%	112-132	CRM	100\%	20.18	2.250	48.83	92.99\%	148-155
Avg 4 point Eff					92.49\%		Avg 4 point Eff					91.20\%	
115VAC/ 60 Hz	15 V	Efficiency					230VAC/50Hz	15V	Efficiency				
Mode	Load	Vout (Board end)	Iout	Pin	$\begin{gathered} \text { EFF } \\ \text { (Board End) } \end{gathered}$	Fsw(KHz)	Mode	Load	Vout (Board end)	Iout	Pin	EFF (Board End)	Fsw(KHz)
KICK	10\%	15.18	0.3	5.19	87.75\%	32-34	KICK	10\%	15.18	0.3	5.44	83.71\%	11k/34
DCM	25\%	15.2	0.750	12.42	91.79\%	44-49	DCM	25\%	15.2	0.750	12.822	88.91\%	42-47
DCM	50\%	15.23	1.500	24.56	93.02\%	65-75	DCM	50\%	15.21	1.500	24.96	91.41\%	62-73
CRM	75\%	15.27	2.250	36.77	93.44\%	107-120	CRM	75\%	15.14	2.250	36.77	92.64\%	137
CRM	100\%	15.3	3.000	49.2	93.29\%	84-105	CRM	100\%	15.08	3.000	48.76	92.78\%	107-125
Avg 4 point Eff					92.88\%		Avg 4 point Eff					91.44\%	
115VAC/60Hz	9V	Efficien					230VAC/50Hz	9V	Efficiency				
Mode	Load	Vout (Board end)	Iout	Pin	EFF (Board End)	Fsw(KHz)	Mode	Load	Vout (Board end)	Iout	Pin	EFF (Board End)	Fsw(KHz)
KICK	10\%	9.07	0.3	3.125	87.07\%	13	KICK	10\%	9.07	0.3	3.285	82.83\%	10-11
DCM	25\%	9.1	0.750	7.53	90.64\%	40	DCM	25\%	9.1	0.750	7.938	85.98\%	34-38
DCM	50\%	9.13	1.500	14.83	92.35\%	49-54	DCM	50\%	9.13	1.500	15.29	89.57\%	47-52
DCM	75\%	9.16	2.250	22.22	92.75\%	60-70	DCM	75\%	9.16	2.250	22.68	90.87\%	58-67
CRM/DCM	100\%	9.2	3.000	29.7	92.93\%	84/68	CRM/DCM	100\%	9.2	3.000	30.15	91.54\%	85/64
Avg 4 point Eff					92.17\%		Avg 4 point Eff					89.49\%	
115VAC/60Hz	5V	Efficiency					230VAC/50Hz	5V					
Mode	Load	Vout (Board end)	Iout	Pin	$\begin{gathered} \text { EFF } \\ \text { (Board End) } \end{gathered}$	$\mathrm{Fsw}(\mathrm{KHz})$	230VAC/50Hz	Load	Vout (Board end)	Iout	Pin	EFF (Board End)	Fsw(KHz)
KICK	10\%	5.04	0.3	1.747	86.55\%	8	KICK	10\%	(Boarde	0.3	1.865	81.07\%	6
KICK	25\%	5.07	0.750	4.243	89.62\%	13	KICK	25\%	5.08	0.750	4.454	85.54\%	12
DCM	50\%	5.12	1.500	8.437	91.03\%	37-46	KICK	50\%	5.12	1.500	8.718	88.09\%	12k/58
CRM/DCM	75\%	5.15	2.250	12.64	91.67\%	59/39-54	DCM	75\%	5.15	2.250	13.12	88.32\%	43
CRM/DCM	100\%	5.2	3.000	16.935	92.12\%	56/52	CRM/DCM	100\%	5.2	3.000	17.46	89.35\%	61/41-51
Avg 4 point Eff					91.11\%		Avg 4 point Eff					87.83\%	

No Load Consumption

$115 \mathrm{Vac} / 60 \mathrm{~Hz}$ @5Vout	$230 \mathrm{Vac} / 50 \mathrm{~Hz}$ @5Vout
30 mW	32 mW

Dr. Flyback ${ }^{\text {™ }}$
for Optimal Efficiency (95% to 96%) \& Power Density
Resonant Flyback
Almost Always ZVS for both switches to reduce EMI filters size and to reduce transformer size $\mathrm{f}_{\mathrm{sw}} \mathrm{V}_{\text {EAO-clamped=2.0V: Laser Trim for Switching Frequency Selection in Light Load Mode }}$

Ready for GaN or SiC
Performance Data (65W PD Application)

$115 \mathrm{Vac} / 60 \mathrm{~Hz}$								$230 \mathrm{Vac} / 50 \mathrm{~Hz}$							
115Vac	20V	Efficiency						230Vac	20V	Efficiency					
Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)	Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)
DCM	10\%	20.22	0.325	6.57	7.5	87.62\%	44	DCM	10\%	20.22	0.325	6.57	7.806	84.19\%	44
DCM	25\%	20.23	0.8125	16.44	17.88	91.93\%	62	DCM	25\%	20.18	0.8125	16.40	18.12	90.49\%	76
CRM/DCM	50\%	20.22	1.625	32.86	35.34	92.98\%	178/63	CRM	50\%	20.23	1.625	32.87	35.8	91.83\%	226
CRM	75\%	20.24	2.438	49.34	52.78	93.47\%	145	CRM	75\%	20.17	2.438	49.16	52.72	93.26\%	192
CRM	100\%	20.28	3.250	65.91	70.53	93.45\%	120	CRM	100\%	20.11	3.250	65.36	69.83	93.60\%	156
Avg 4 point Eff						92.96\%	89.000\%	Avg 4 point Eff						92.29\%	89.000\%
115Vac	15 V	Efficiency						230Vac	15V	Efficiency					
Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)	Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)
DCM	10\%	15.18	0.3	4.55	5.225	87.16\%	37	DCM	10\%	15.19	0.3	4.56	5.575	81.74\%	43
DCM	25\%	15.21	0.75	11.41	12.45	91.63\%	53	DCM	25\%	15.19	0.75	11.39	12.79	89.07\%	52
DCM	50\%	15.23	1.5	22.85	24.6	92.87\%	72	DCM	50\%	15.1	1.5	22.65	24.75	91.52\%	89
CRM	75\%	15.24	2.250	34.29	36.78	93.23\%	147	CRM	75\%	15.19	2.250	34.18	36.92	92.57\%	178
CRM	100\%	15.3	3.000	45.90	49.09	93.50\%	117	CRM	100\%	15.14	3.000	45.42	48.69	93.28\%	150
Avg 4 point Eff						92.81\%	88.852\%	Avg 4 point Eff						91.61\%	88.852\%
115Vac	9V	Efficiency						230Vac	9V	Efficiency					
Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)	Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)
DCM	10\%	9.14	0.3	2.74	3.182	86.17\%	28	KICK	10\%	9.15	0.3	2.75	3.18	86.32\%	KICK
DCM	25\%	9.17	0.75	6.88	7.572	90.83\%	40	KICK	25\%	9.17	0.75	6.88	7.683	89.52\%	KICK
DCM	50\%	9.2	1.5	13.80	14.93	92.43\%	53	DCM	50\%	9.22	1.5	13.83	15.18	91.11\%	31
DCM	75\%	9.26	2.250	20.84	22.42	92.93\%	63	DCM	75\%	9.26	2.250	20.84	22.65	91.99\%	38
DCM	100\%	9.27	3.000	27.81	29.9	93.01\%	77	DCM	100\%	9.29	3.000	27.87	30.18	92.35\%	50
Avg 4 point Eff						92.30\%	87.295\%	Avg 4 point Eff						91.24\%	87.295\%
115Vac	5 V	Efficiency						230Vac	5V	Efficiency					
Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)	Mode	Load	Vout	Iout	Pout	Pin	EFF	Fsw(KHz)
KICK	10\%	5.05	0.3	1.52	1.765	85.84\%	2.88/37	KICK	10\%	5.061	0.3	1.52	1.84	82.52\%	KICK
DCM	25\%	5.08	0.75	3.81	4.3	88.60\%	32	KICK	25\%	5.091	0.75	3.82	4.351	87.76\%	KICK
DCM	50\%	5.12	1.5	7.68	8.465	90.73\%	42	KICK	50\%	5.133	1.5	7.70	8.63	89.22\%	KICK
DCM	75\%	5.17	2.250	11.63	12.71	91.52\%	48	KICK	75\%	5.164	2.250	11.62	12.95	89.72\%	KICK
DCM	100\%	5.22	3.000	15.66	17.05	91.85\%	52	DCM	100\%	5.22	3.000	15.66	17.38	90.10\%	35
Avg 4 point Eff						90.68\%	81.835\%	Avg 4 point Eff						89.20\%	81.835\%

No Load Consumption

$115 \mathrm{Vac} / 60 \mathrm{~Hz}$ @5Vout	$230 \mathrm{Vac} / 50 \mathrm{~Hz}$ @5Vout
27 mW	29 mW

$V_{\text {in }}=115 \mathrm{Vac} / 60 \mathrm{~Hz}, 100 \%$ Load

$V_{\text {in }}=115 \mathrm{Vac} / 60 \mathrm{~Hz}, 25 \%$ Load

$V_{\text {in }}=115 \mathrm{Vac} / 60 \mathrm{~Hz}, 5 \%$ Load

$\mathrm{V}_{\text {in }}=230 \mathrm{Vac} / 50 \mathrm{~Hz}, 100 \%$ Load

$\mathrm{V}_{\text {in }}=230 \mathrm{Vac} / 50 \mathrm{~Hz}, 25 \%$ Load

$V_{\text {in }}=230 \mathrm{Vac} / 50 \mathrm{~Hz}, 5 \%$ Load

CONDUCTOR

Dr. Flyback ${ }^{\text {TM }}$
for Optimal Efficiency (95% to 96%) \& Power Density

Dr. Flyback ${ }^{\text {TM }}$ with SR_NO Load Power Consumption (65W/20V Single Output without USB Type-C PD circuit)

Dr. Flyback ${ }^{\text {TM }}$ with SR_NO Load Power Consumption (20V with USB Type-C PD circuit)

Dr. Flyback ${ }^{\text {TM }}$ with SR _NO Load Power Consumption (65W/5V with USB Type-C PD circuit)

PACKAGE DIMENSION

TSSOP-18L Pad Layout \quad Unit: inch(mm)

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining

