

AN-PJ1001

PANJIT Power Diode Electrical Characteristics

To learn more about PANJIT International Inc., please visit our website at www.panjit.com

Table of Contents

1	Revision History2
2	Introduction of PANJIT Power Diode Product Family
	2.1 PANJIT FRED trade-off characteristic between V_{F} and Q_{RR}
3	PANJIT FRED Electrical Characteristics5
	3.1 PANJIT FRED DC and AC Characteristic
	3.2 PANJIT 600V Speedy FRED7
	3.3 PANJIT 1200V Speedy FRED
4	Power Loss Calculation of Speedy FRED9
	4.1 PANJIT 600V Speedy FRED in CCM Boost PFC Circuit
	4.2 PANJIT 1200V Speedy FRED in Vienna PFC Circuit 12
5	Summary13

1 Revision History

Rev.	Revision Description	Edit by	Date
Rev.00	Document release	DM Kim	2020/09/14
Rev.01	FRED Line-up update	DM Kim	2021/04/23
Rev.02	FRED Line-up update	DM Kim	2021/08/16
Rev.03	FRED Line-up update	DM Kim	2023/02/18

2 Introduction of PANJIT Power Diode Product Family

Power diodes can be used as rectification and freewheeling in power electronic systems. In order to achieve high system efficiency, it is important to choose the proper power diode whose electrical characteristics are meeting the requirement of each application. PANJIT International Inc. has released two distinct power diode product families which are appropriate for various power applications. This application note is designed to help power electronic system engineers to understand the electrical characteristics of PANJIT power diodes and to improve the system efficiency with the right choice of power diode: for example, "Optima FRED" for rectifying circuit such as high power bridge diode and by-pass diode, and "Speedy FRED" for high-frequency freewheeling circuit in CCM boost PFC and Vienna PFC to achieve the maximum system efficiency.

- Optima FRED: Low V_F / Optimized T_{RR}
- Speedy FRED: Low T_{RR} / Optimized V_F / Better EMI Characteristics

PANJIT Gen. 1 FRED has 600V, 1000V, 1200V line-up as listed in Table 1 to support various application needs.

Optima FRE	D (Low	/ V₁) ∶I	Minimize	Condu	ction Loss							
Speedy FRE	D (Low	/ T _{rr}) : I	Minimize	Sw itch	ning Loss					* NC 1 pi		
Series	ВV (V)	I _r (A)	V _{f Typ.} (V)	T _{rr Typ.} (ns)	TO-252AA	TO-263	TO-220AC	ITO-220AC	TO-247-2LD	TO-247-3LD		
		8	1.3	60	PSDD0860L1 PSDC0860L1*	PSDB0860L1	PSDP0860L1	PSDF0860L1				
600V FRED		15	1.3	70		PSDB1560L1	PSDP1560L1	PSDF1560L1				
Optima		2.0	1.3	75		PSDB3060L1	PSDP3060L1	PSDF3060L1	PSDH3060S1			
(Low Vf)		30	1.3	70						PSDH3060CCL1		
		60	1.25	135					PSDH6060L1			
	600	60	1.3	75						PSDH6060CCL1		
	600	8	1.8	35	PSDD0860S1 PSDC0860S1*	PSDB0860S1	PSDP0860S1	PSDF0860S1				
600V FRED	dy	/		15	1.8	42		PSDB1560S1	PSDP1560S1	PSDF1560S1		
Speedy (Low Trr)			30	1.8	45		PSDB3060S1	PSDP3060S1	PSDF3060S1	PSDH3060S1		
					1.8	42						PSDH3060CCS1
			60	1.65	55					PSDH6060S1		
		00	1.8	45						PSDH6060CCS1		
1000V FRED Speedy (Low Trr)	1000								PSDH30100S1			
		8	2.1	70			PSDP08120L1					
1200V FRED Optima		15	2.1	105			PSDP15120L1					
(Low Vf)	1200	30	2.1	160			PSDP30120L1		PSDH30120L1			
		60	2.0	220					PSDH60120L1			
1200V FRED	1200	8	3.0	45			PSDP08120S1					
Speedy		15	3.0	70			PSDP15120S1					
(Low Trr)		30	3.0	135			PSDP30120S1		PSDH30120S1			
		60	2.7	170					PSDH60120S1			

Table 1. PANJIT Gen. 1 FRED Line-up

2.1 PANJIT FRED trade-off characteristic between V_F and Q_{RR}

Figure 1 shows a simple P-i-N structure of power diode. Generally, P-i-N diode has a tradeoff relation between V_F and Q_{RR} , which is determined by the injection efficiency of the hole. The life time which is to remove the trapped minority carrier during conductivity modulation in epi layer is controlled by Pt diffusion life time killing method. Short life time period can improve reverse recovery while it can affect to higher forward voltage, VF. So, this trade-off characteristic should be optimized according to the target application.

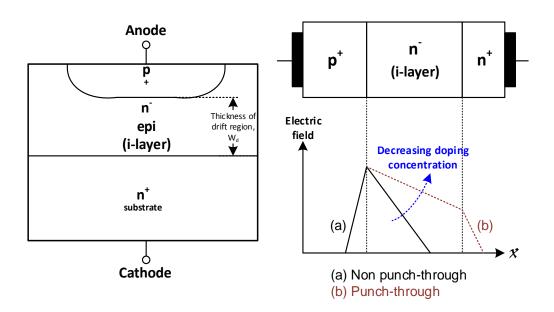


Figure 1. Simple P-i-N Structure of Power Diode

As shown in figure 2, PANJIT Optima FRED is optimized for lower conduction loss with lower V_F while Speedy FRED is optimized for lower switching loss with lower Q_{RR} . Due to these different characteristics, Optima FRED is appropriate for low switching frequency applications and Speedy FRED is suitable for the applications with high switching frequency.

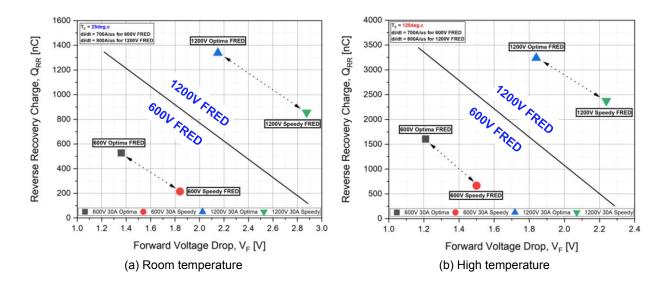
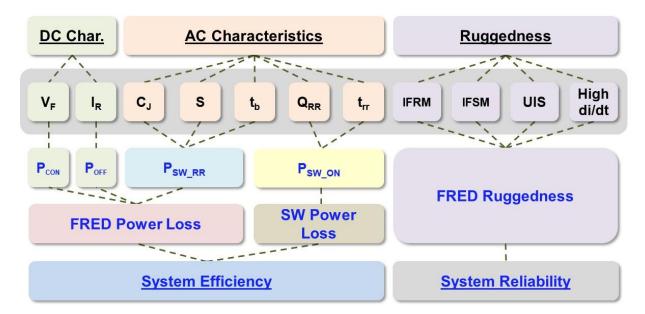



Figure 2. PANJIT FRED Trade-off Characteristic Between V_F and Q_{RR}

3 PANJIT FRED Electrical Characteristics

The electrical characteristics of power diode is relevant to the power system efficiency and reliability. And especially power losses are the major factor for deciding the system efficiency. The power losses can be affected by DC and AC characteristic as depicted in figure 3.

Figure 3. Electrical Characteristics Related to System Performance

Refer to below equations to understand the relation between each power loss and power diode electrical characteristics:

P_{CON} (Conduction loss) = $I_F \times V_F$ P_{OFF} (Reverse Conduction Loss) = $I_R \times V_R$

- $P_{SW_{RR}}$ (Reverse Recovery Switching Loss) = $E_{RR} \times F_{SW}$
- $P_{SW_{ON}}$ (Turn-on Switching Loss of Switch) = $E_{ON} \times F_{SW}$

Annotations) IF: forward current / VF: forward voltage drop / IR: reverse leakage current / VR: reverse bias voltage / E_{RR} : energy loss of reverse recovery / E_{ON} : turn-on loss of main switch

 P_{CON} , P_{OFF} and $P_{SW_{RR}}$ are the power losses dedicated to power diode while $P_{SW_{ON}}$ is the power loss of the main switch affected by power diode. All these power losses should be minimized to get a better system efficiency.

3.1 PANJIT FRED DC and AC Characteristic

DC characteristics of 600V and 1200V Optima FRED

 V_F and I_R are the key parameters to show DC characteristic of power diode. The characteristics of PANJIT 600V and 1200V Optima FRED are summarized in figure 4 and 5 respectively. PANJIT Gen. 1 Optima FREDs have stable leakage current performance with a moderate forward voltage drop.

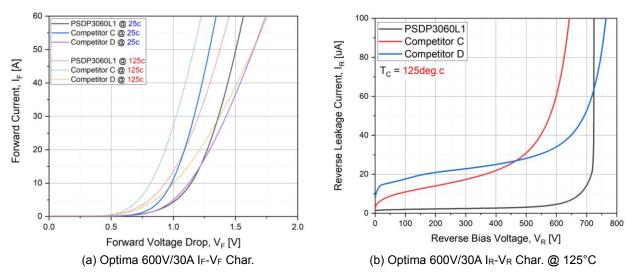


Figure 4. 600V Optima FRED Forward Voltage Drop and Reverse Leakage Current

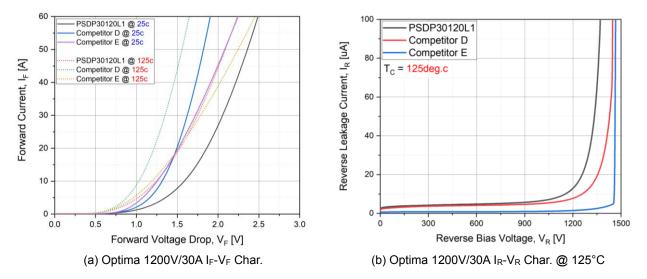


Figure 5. 1200V Optima FRED Forward Voltage Drop and Reverse Leakage Current

AC characteristics of 600V and 1200V Speedy FRED

There are several AC parameters such as C_J, T_{RR}, I_{RR} and Q_{RR} for the system engineers to consider to get an appropriate system performance with power diode. The softness factor (S=t_b/t_a) depicted in figure 6, is the key parameter to get better EMI performance, t_a is the time from zero current to I_{RR} and t_b is the time from I_{RR} to the next zero current. The severe current and voltage oscillation can be caused by a poor softness factor and these may cause improper EMI to a system.

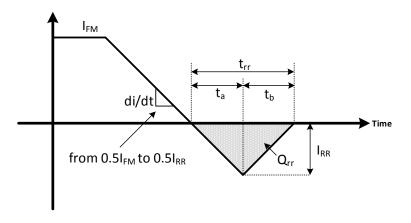


Figure 6. The Parameter Definition of the Reverse Recovery Waveform

3.2 PANJIT 600V Speedy FRED

The switching loss E_{ON}, and reverse recovery waveform of power diode are measured in inductive load switching circuit. The comparison table of 600V Speedy FRED is summarized in Table 2. PANJIT 600V Speedy FRED shows less oscillation than competitors as shown in Figure 7. As a result, system engineers can use higher di/dt with PANJIT 600V Speedy FRED to minimize switching loss or keep the same di/dt with competitors to get a better EMI result.

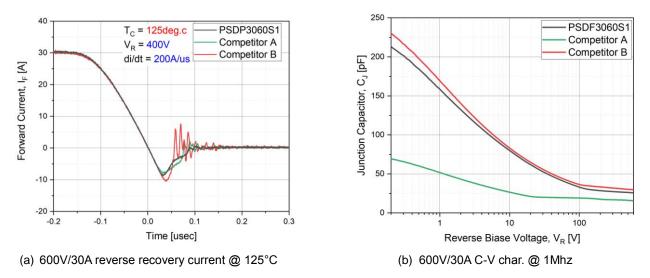


Figure 7. 600V Speedy FRED Reverse Recovery Waveform and Junction Capacitor

Device	V _F [V]	I _{RR} [A]	Q _{RR} [nC]	E _{RR} [uJ]	E _{ON} [uJ]
PSDP3060S1	1.55	8.7	460	179	1331
Competitor A	1.83	8.0	378	292	1241
Competitor B	1.60	10.5	355	194	1268

3.3 PANJIT 1200V Speedy FRED

Figure 8 shows reverse recovery waveform and junction capacitance graph of 1200V Speedy FRED. In this waveform, PANJIT 1200V Speedy FRED shows an outstanding Trr and Junction Capacitance characteristics compared to other competitors. Accordingly, PANJIT FRED will make the lowest switching loss so that lower E_{ON} can be achieved. Furthermore, with the advantage of the moderate junction capacitance value, PANJIT 1200V Speedy FRED would show the lowest E_{RR} among other competitors.

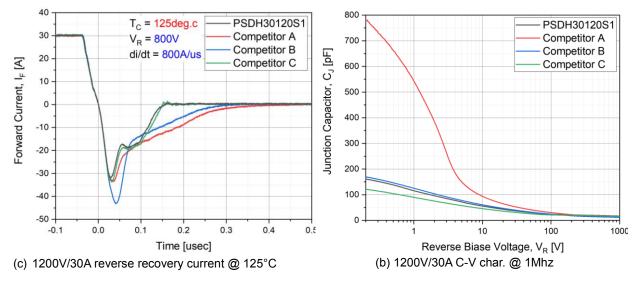
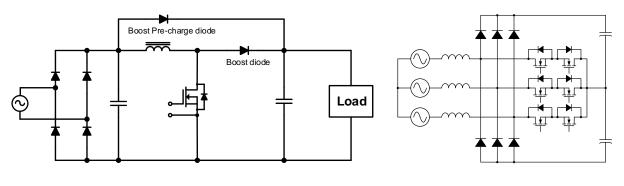


Figure 8. 1200V Speedy FRED Reverse Recovery Waveform and Junction Capacitor


Device	V _F [V]	I _{RR} [A]	Q _{RR} [nC]	E _{RR} [uJ]	E _{ON} [uJ]
PSDP30120S1	2.2	31.7	2268	395	1984
Competitor A	2.0	33.5	3939	832	2065
Competitor B	2.1	43.2	3590	575	2297
Competitor C	2.1	33.7	2487	441	2024

According to the test result shown in Table 3, PANJIT FRED is able to perform superior if engineers apply proper FREDs depending on the application needs. These electrical characteristics also can be used in power loss simulation to estimate system level efficiency as well as to have comprehensive understanding of PANJIT FREDs' performance.

4 Power Loss Calculation of Speedy FRED

The circuit diagrams used for power loss calculation in this document are depicted in Figure 9 - CCM Boost PFC and Single phase Vienna PFC. The electrical characteristics of PANJIT Speedy FREDs were applied to these topologies thus calculations were also done with Speedy FRED.

(a) Circuit diagram for CCM Boost PFC

(b) Circuit diagram for Vienna PFC

Figure 9. Circuit Diagram for the Power Loss Simulation

4.1 PANJIT 600V Speedy FRED in CCM Boost PFC Circuit

PFC circuit is used for home appliance, welding machine for European market, and on-line UPS. CCM Boost PFC depicted in Figure 9 (a) is one of the PFC circuit widely used in these applications thanks to the simple structure and control scheme.

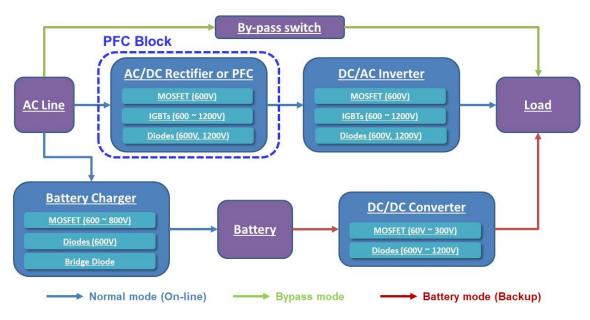


Figure 10. Block Diagram for On-line UPS Application

Figure 10 shows UPS system block diagram. PFC block is applied at the first stage for power factor correction or DC-link voltage control when on-line UPS is operating. As depicted in Figure 9 (a), 600V FRED can be used as freewheeling diode in CCM Boost PFC. Figure 11 shows power loss simulation result of PNAJIT 600V Gen. 1 Speedy FRED and competitors' devices. As a result, PANJIT FRED surpasses competitor's devices at various conditions due to its' better trade-off performance between V_F and Q_{RR}.

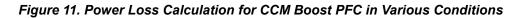
Prr

Pcon

Pon

(a) Power loss @ 2kW, 110Vac, 400VDC,

Fsw=20kHz


(c) Power loss @ 2kW, 110Vac, 400VDC,

(e) Power loss @ 2kW, 110Vac, 400VDC,

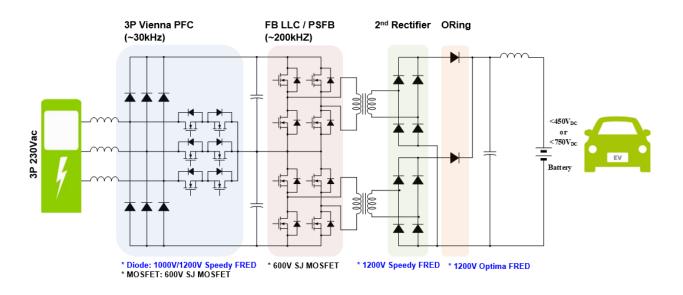
Fsw=40kHz

CCM Boost PFC Power Losses @ 2kW, Fsw=30kHz 18.0 W 16.0 W 14.0 W Prr 12.0 W 10.0 W ■ Pcon 8.0 W 6.0 W Pon 4.0 W 2.0 W 0.0 W PSDF3060S1 COMPETITOR A COMPETITOR B

(d) Power loss @ 2kW, 220Vac, 400VDC,

F_{sw}=30kHz

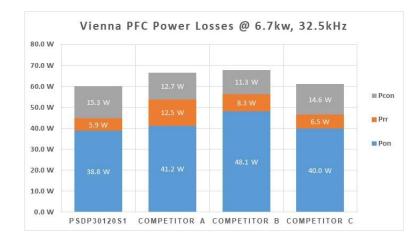
(f) Power loss @ 2kW, 220Vac, 400VDC,

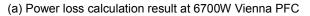

Fsw=40kHz

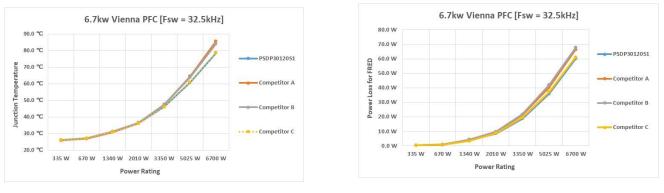
Fsw=20kHz

4.2 PANJIT 1200V Speedy FRED in Vienna PFC Circuit

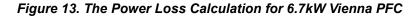
Figure 12 is the system block diagram of EV charging system with 3 Phase Vienna PFC. 3 Phase Vienna PFC is widely adopted in PFC block as it provides improved efficiency of system. In this circuit, only 50% of DC link voltage is applied to the MOSFET device of PFC block, thus the voltage stress on the MOSET devices can be reduced.


Figure 12. System Block Diagram of EV Charging Pole


Below system condition is used to calculate the power loss of Vienna PFC.


- Input AC Voltage: 230Vac / 50Hz
- Switching Frequency for MOSFET and Diode: 32.5 kHz
- Output DC Link Voltage: 600Vdc
- Maximum Power: 6670W per phase
- Inductor: 470uH
- Ambient Temperature: 25°C
- R_{thsa}, Heatsink to Ambient: 0.1°C per Watt
- Rthcs, Case to Heatsink: 0.5°C per Watt

Referring to the power loss result calculated with above system condition shown in Figure 13, PANJIT 1200V Gen. 1 Speedy FRED is the best solution to achieve the lowest power loss among competitors.



(c) Power loss comparison at various power ratings

5 Summary

PANJIT has released 600V & 1200V Gen. 1 Optima and Speedy FRED, which can be used for low frequency (Optima) and high frequency (Speedy) applications respectively. In order to achieve higher system efficiency, power system design engineers should clearly understand the different electrical performance of each FRED product series. Also, as shown in reverse recovery characteristic of PANJIT Speedy FRED, the current oscillation is superior to other competitors and the power system design engineer can choose better efficiency with same EMI or same efficiency with better EMI as using PANJIT FRED in their system. In conclusion, PANJIT 600V & 1200V Gen. 1 FREDs are lined up in various current ratings to provide the most sufficient solution to various applications.

DISCLAIMER

PANJIT International Inc. Reserves the right to make changes, corrections, enhancements, modifications, and improvements to PANJIT products and/or to this document without further notice. The recipient of this document must verify any function described herein in the real application. PANJIT assumes no liability for customers' product design or applications.

Products are not authorized for use as critical components in life support devices/systems, devices/systems requiring extraordinarily high level quality and/or reliability and/or a malfunction/failure may cause loss of human life, serious public impact. PANJIT assumes no liability for product if use in these situations.

COMMENTS

Your feedback will help us to continuously improve the quality of this document. Any information that you feel wrong or unclear, please send your proposal to: sales@panjit.com.tw