

GENERAL DESCRIPTION

This data sheet will show how to remove Phantom Power consumption. It may not be necessary to use *Magic Switch* (Fig1) and an equivalent circuit (Fig2) has been provided in the data sheet. The Phantom Power consumption due to EMI Cap.'s discharge resistor can be removed by a pretty simple circuit as describe in the block diagram. However, *Magic Switch* could be most cost-effective, layout easy.....choice for designing zero no load consumption application.

Magic Switch, it behaves like a magic switch or a low-pass filter. Magic switch allows DC passes and AC is blocked. Magic switch is a low pass filter. It allows frequency more than 20 Hz to pass (AC plug-in Magic switch turn off) with ~ Zero Input Power. When frequency small than 20Hz, Magic switch is turn on discharge EMI's Cap.

Magic switch power consumption is approaching to 0mW when line voltage appears.

Note : When 270VAC input: Magic Switch consumption is approaching~5.8mW

PIN CONFIGURATION

SOD-123 TOP View

FEATURES

- Remove Phantom Power consumption
- ♦ 4 terminal with > 5 mm space on package and PCB
- 2 terminal with >3 mm space on package (IC inside) and PCB
- Meet safety IEC 60065/60950/62368
- Break down voltage ~1KV
- Design for lightning surge sensitive environment
- One product works with any EMI's capacitor filter design
- Most cost effective, Layout easy solution, easily to meet Erp lot6 tier 2 requirement
- SOD-123 packages for Adaptor / Desktop Application
- The package is polarity insensitive.
- Application for Cx Cap ~ 8uF
- Operating Voltage 90~300VAC

Product and Packing Information

Part No.	Package Type	Packing Type	Marking
CMD02XIU	SOD-123	3K pcs / 7" reel	D2xx

*Note: xx : year & date code

ABSOLUTE MAXIMUM RATINGS (TA=25°C, unless otherwise specified)

PARA	METER	Symbol	RATINGS	Unit	
Turn on ID Max. Curren	t Continues	(Rd1+Rd2>300VAC*1.414/2mA=212Kohm)	2	mA	
Turn on ID Max. Curren	t Peak Current (0.5sec)	(Rd1+Rd2>300VAC*1.414/5mA=85Kohm)	5	mA	
Turn on ID Max. Curren	t Peak Current (100ms)	(Rd1+Rd2>300VAC*1.414/20mA=21Kohm)	20	mA	
Package Power Dissipa (SOD-123)	tion @ T _A ≤ 25°C	PD	0.5	W	
Drain1 to Drain2 Voltage		VDSS	1000	V	
Junction Temperature	SOD-123	TJ	+150	°C	
Storage Temperature	SOD-123	Tstg	-55~+150	°C	
Junction to Ambient *	SOD 102	θ _{JA}	250	°C/W	
Case Temperature	SOD-123	θις	50	0/00	
Operation Junction Temperature			-40 ~ +125	°C	

LС

Note : 1. Surface Mounted on 1in^2 pad area, t \leq 10sec

2. Operating Ambient Temperature is $85{\pm}2^\circ\!\mathrm{C}$

APPLICATION CIRCUIT:

Original application

Magic Switch application

Total X-cap (C008~C015) 0.1uF~8uF

Before Fuse

Rd1

Rd2

After Fuse

Magic Switch

FUSE

Rd1

Rd2

Magic Switc

Total X-cap (C008~C015) 0.1uF~8uF

Figure 1. Magic switch application

SIMPLIFIED BLOCK DIAGRAM : Equivalent Circuit

Figure 2. Magic Switch equivalent circuit

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, T_{A} = 25 $^{\circ}\text{C}$.

			Magic Switch									
PARAMETER	SYMBOL	TEST CONDITIONS	Min	Тур	Мах	Unit						
Breakdown Voltage												
Drain1 to Drain2	BV _{DSS}		-	1	-	κv						
Internal 1KV MOSFET turn On delay time												
1KV MOSFET On delay time	Ton delay	Vd1d2 = 127V, Rd1=Rd2= 250K (Figure1)	-	-	280	mS						
1KV MOSFET Rdson												
1KV MOSFET Rdson	Rdson	Vgs = 12V @ room temp	-	60	-	Kohm						
Discharge Time test (400V discharged to 60V)												
400V to 60V discharging time test	Tdischarging	Rd1+Rd2=250K; Cx =0.68uF	-	0.5	-	S						
Magic switch supply current without turning on 1kV MOSFET												
Magic Switch current @ line Frequency =47 Hz	I supply ac	Vin = 230 Vac and Frequency =47Hz	-	-	20	uA						

Note for 1KV Mosfet On delay time: Ton delay is inversely proportional to Vd1d2, Ton delay is around 25~40ms in Vd1d2=380V

IC Test Equipment circuit

DELAY TIMER (Figure 1~4: cursor a to cursor b)

Example condition :

Input=90Vac~270Vac, Cx=0.68uF, Rd1=Rd2=250K ohm

DESCRIPTION

Magic switch is designed to replace the discharging resistor of EMI filter. Magic switch is one product to fit for any EMI's capacitor Design. Magic switch is a low-pass filter. When the input frequency is lower than 20Hz (AC plug out), the two-integrated 1KV MOSFETS will be turned on and when the input frequency is higher than ~ 20Hz(AC plug in), the two-integrated 1KV MOSFET will be off.

Magic switch has 4 or 2 terminals. Magic switch's two 1KV MOSFET connects 2 external discharging resistor when input frequency < 20Hz. Magic switch's two 1KV MOSFET disconnects 2 external discharging resistor when input frequency is > 20Hz.

The total value of two external resistor value should be determined by the (Rd1+Rd2)*Cx time constant, If Tdischarge time need small than 0.5Sec. Therefore, Tdischarge = $(Rd1+Rd2) \times Cx < 0.5Sec$. Cx is the EMI x capacitor. In actual application, using Magic Switch just need select external discharge resistor Rd1 and Rd2 from table1.Finally,X-capactior discharge to 37% voltage is (Tdischarge time+Ton delay time)

For application:

The EMI Capacitor Tdischarge time equation: V2=V1*e^(-T/RC), V2 is discharge voltage, V1 is initial voltage. If your Tdischarge time select=0.6sec. From table 1 you can obtain Cx and (Rd1+Rd2). The X capacitor discharge to 37% voltage=(Tdischarge time +Ton delay time)≈0.9sec

Product	Magic Switch (for any EMI capacitor)																						
Calculate discharge resistor & discharge time	Comparison sheet																						
Total X Capacitor (uF) : C _x	0.1		0.22		0.47		0.68		1		1.5		2		2.5		3		5		8		
Discharging Time (S) : T _D (RC time constant)	0.7	0.700		0.700		0.700		0.700		0.700		0.700		0.700		0.700		0.700		0.700		0.700	
Total Discharge Resistor (KΩ) : R ₀₁ +R ₀₂	69	6980		3140		1438		975		644		409		292		22	175		81		28		
Discharge Resistor (KΩ) : R _{D1} =R _{D2}	34	3490		1570		719		488		322		205		146		11	87		40		14		
Select Discharge Resistor (KΩ) : R ₀₁ =R ₀₂ (Pay attention to surge current)	30	3000		1300		620		430		270		180		120		91		75		3	1	0	
AC Input (V) : V1 (Spec. 80~300Vac)	80	300	80	300	80	300	80	300	80	300	80	300	80	300	80	300	80	300	80	300	80	300	
Discharg Ratio (%) (Spec. ~ 37%)	3	7	3	37		37		37		37		37		37		37		37		37		37	
Discharg to V ₂ (V) (80V or 300V ×1.414×37%)	42	157	42	157	42	157	42	157	42	157	42	157	42	157	42	157	42	157	42	157	42	157	
Delay time max. =280mS (Datasheet Spec.) Delay time min. =30mS (Datasheet Figure 4)	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	0.28	0.03	
Total Discharge Time (Worse case: 80Vac) IEC 60950 (Internal delay time + $C_{\rm X}$ discharge time to 37%) within 1Sec.	0.883	0.633	0.862	0.612	0.887	0.637	0.902	0.652	0.877	0.627	0.906	0.656	0.877	0.627	0.882	0.632	0.906	0.656	0.906	0.656	0.916	0.666	
IEC 62368 (ES1 Class) <60Vdc within 2 Sec. 60		1.215		1.175		1.225		1.254		1.204		1.262		1.204		1.213		1.262		1.262		1.282	

DISCHARGE TIMING TEST

Condition : 300VAC , Cx = 0.1uF and 8uFThe minimum Rd1+Rd2=20K ohm and the maximum Cx=8uF The maximum Rd1+Rd2=6M ohm and the minimum Cx=0.1uF

Tdischarge time <1sec (Meet safety IEC 60950)

A Csurge ~ 47pF capacitor should be added to parallel with Magic switch for strenuous lightning surge test. The Csurge is added to suppress the voltage across Magic Switch.

Magic switch 4/2 terminal package provides minimum 50/3 mm space for PCB layout. Magic Switch is designed for lightning surge sensitive environment.

Without Magic Switch, the equivalent circuit on the simplified block figure has been provided and it will have the similar good performance. However, Magic Switch is more cost-effective and easy layout.

TEST CIRCUIT

PACKAGE DIMENSION

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining